Il rosso che vedo io e il rosso che vedi tu

kitaoka_redspiralsIl rosso che vedi tu è uguale al rosso che vedo io? Direi di trascurare i risvolti filosofici della questione e di rispondere alla domanda come se fosse perfettamente appropriata. Mettiamo insomma che tu, mantenendo la tua identità, possa trasferirti nel mio corpo (Invasion of the Vision Snatchers*) e vedere il mondo attraverso il mio sistema visivo. Guardi un pomodoro maturo, poi, zip!, traslochi nella mia testa e lo guardi ancora: il suo colore è cambiato?

I colori che vediamo dipendono dall’attività di tre tipi di coni, soprannominati familiarmente coni rossi, verdi e blu perché rispondono di preferenza alle lunghezze d’onda lunghe (“rosse”), medie (“verdi”) e corte (“blu”) della luce. La luce riflessa dal pomodoro attiva soprattutto i coni rossi, un po’ meno i coni verdi e per niente i coni blu. Insomma, il colore che vediamo contemplando il pomodoro è dato da uno preciso rapporto, calcolato in alcune aree del cervello, tra le attività dei nostri coni rossi e verdi. Se coni rossi e verdi sono egualmente attivi, vediamo giallo; man mano che i coni rossi diventano più attivi di quelli verdi, il giallo diventa arancio e poi rosso. Potrebbero i nostri sistemi visivi essere così diversi da generare pomodori di colori diversi?

In alcuni casi, ça va sans dire. Per esempio, se sono un maschio ho una probabilità su dodici di essere daltonico. Il cervello di un daltonico non è capace di confrontare fra loro i livelli di attività dei coni rossi e verdi; è come se questi due livelli fossero sempre identici, per cui il risultato non può essere altro che giallo. Spòstati nella mia testa e il pomodoro ti apparirà giallognolo (anche se io ho imparato a chiamarlo “rosso”). Se invece sono una femmina potrei, tanto per dire, avere quattro coni diversi anziché tre; con la mia super-visione tetracromatica distinguerei sfumature di rosso che a te sembrano uguali. Spòstati nella mia testa e il pomodoro ti apparirà di un rosso diverso da prima.
Troppo facile puntare sulle eccezioni, dirai tu: ma se abbiamo tutti e due una visione a colori “normale”?
Beh, le prime fotografie di rètine umane con una risoluzione decente si è riusciti a ottenerle solo tre anni fa, e a sorpresa queste hanno rivelato che il rapporto fra coni rossi e verdi varia in modo impressionante fra un individuo e l’altro, addirittura fino a 40 volte. Alcuni di noi hanno lo stesso numero di coni rossi e verdi, in altri i coni rossi sono il doppio o il quadruplo di quelli verdi e così via. Se io ho un rapporto fra coni molto diverso dal tuo, quando traslochi nella mia testa il pomodoro ti apparirà di un rosso diverso da prima. La cosa stupefacente è che non è così diverso come ci si aspetterebbe: se fra tanti campioncini di giallo devono scegliere il giallo puro, quello che non tende né al rosso né al verde, persone con rapporti diversissimi fra coni indicano gialli molto simili. Questo vuol dire che nei cervelli esiste un meccanismo che calibra i colori allo stesso modo, compensando le differenze tra retine.
Un altro segno dell’esistenza di questo meccanismo di calibrazione è che il giallo visto come puro si sposta verso il rosso se si passa qualche ora al giorno in una stanza illuminata da luce rossa; cessata definitivamente la frequentazione della stanza rossa, ci vuole una settimana prima che il giallo torni quello di prima. Ne deduco che, se io e te avessimo sistemi visivi identici ma tu ti trasferissi nella mia testa al mio ritorno da una spedizione nel (giallo) Sahara o nella (bianca) Groenlandia, il pomodoro ti apparirebbe di un rosso diverso; ogni differenza, però, svanirebbe dopo qualche giorno che alloggi nella mia testa. Se condividiamo il mondo e le luci che lo illuminano, condividiamo anche il rosso dei pomodori.

.

DOVE NEL LIBRO: capitolo 2, Il sistema visivo, e capitolo 3, Come vediamo i colori. La morale è che la visione a colori è guidata dalla nostra esperienza del mondo, mediante un meccanismo plastico che calibra i colori che vediamo sulla base di quelli dell’ambiente in cui ci troviamo a vivere—che dipendono fondamentalmente dall’illuminazione. Ho scritto la versione originale di questo pezzo, in risposta alla domanda di un lettore, per la rivista Coelum Astronomia (rubrica Fatti & Opinioni, aprile 2009).

ILLUSTRAZIONE: Qualche volta il rosso che vedo io è diverso dal rosso che vedo io. Questa immagine contiene un’unica tonalità di rosso, anche se i segmenti rossi appaiono arancioni all’interno delle spire gialle, e magenta all’interno delle spire blu (Akiyoshi Kitaoka, 2002).

RIFERIMENTI: Invasion of the Vision Snatchers è un omaggio a Invasion of the Body Snatchers (L’Invasione degli Ultracorpi): un celebre film, tratto da un racconto di fantascienza di Jack Finney, nel quale le persone vengono rimpiazzate da copie aliene perfettamente identiche ma prive di emozioni. Nella sindrome di Capgras (e questa non è fantascienza), una dissociazione fra emozioni e riconoscimento dei volti fa sì che gli individui affetti credano che parenti e amici siano stati sostituiti da impostori a loro identici.

Annunci

I coni delle donne (colpo di scena)

kitaokaguruguru07.jpg

Come si diceva, fatta eccezione per i daltonici noi tutti abbiamo tre tipi di cono, sensibili al rosso, al verde e al blu – la famosa visione tricromatica. Ciascun tipo di cono ci rende capaci di distinguere circa 100 gradazioni di colore, ma siccome il cervello combina queste variazioni in modo esponenziale, alla resa dei conti ognuno di noi può vedere 1 milione di colori differenti. Niente male, dite? Aspettate, che non è finita.

Forse ricordate che i geni del pigmento “rosso” e del pigmento “verde” se ne stanno spalla a spalla sul cromosoma sessuale X, e che le donne hanno due copie di X, una ereditata dalla madre e una dal padre. A un certo punto dello sviluppo cellulare una delle X viene disattivata (le informazioni che porta sono tutti doppioni), ma la produzione dei pigmenti dei coni inizia prima. Quindi, per esempio, ogni donna fabbrica circa metà dei suoi coni “rossi” con la ricetta materna, e l’altra metà con la ricetta paterna. (Le daltoniche sono mosche bianche proprio perché, per fare una signora daltonica, sia mamma che papà devono essere portatori del gene difettoso, mentre per fare un signore daltonico la mamma basta e avanza.)
Ora, le ricette del pigmento “rosso” non sono tutte perfettamente identiche ma possono variare leggermente, un po’ come le ricette del sugo di pomodoro. E c’è di più. Quando producono copie di sé stessi per i posteri, i geni del pigmento “rosso” e “verde” a volte sbagliano e, essendo adiacenti, si scambiano un pezzettino. Ne risulta una ricetta per il “rosso” che ha dentro un ingrediente della ricetta per il “verde”. I coni che contengono questo pigmento saranno massimamente sensibili non più al rosso, ma a una frequenza intermedia fra rosso e verde, un arancio ad esempio.
I coni delle donne derivano sempre da due ricette distinte. Ne consegue che i coni di ciascuna donna saranno sì praticamente uguali fra loro o molto simili nella maggior parte dei casi, ma non in tutti. Per forza di cose alcune donne devono avere due tipi di cono rosso (o verde) talmente diversi da non poter più essere considerate tricromatiche (3 tipi di cono: rosso, verde, blu), ma tetracromatiche (4 tipi di cono: rosso, arancio, verde, blu). Naturalmente il cervello deve essere in grado di interpretare i segnali provenienti da questi quattro tipi di cono – e pare che lo sia.
Una persona dotata di super-visione tetracromatica è teoricamente in grado di distinguere non 1 milione, ma 100 milioni di colori diversi. Chi ha fatto i conti ha concluso che queste signore e signorine potrebbero essere il 2-3% della popolazione femminile mondiale, che niente niente significa 99 milioni di superdonne. Per il momento, ne sono state identificate una o due.
Care lettrici: fatevi sotto! cominciate col contare i diversi colori dell’arcobaleno… Sono solo 7 o 8 per noi normali tricromati, ma voi fantasmagoriche tetracromate dovreste vederne 10 o più.

DOVE NEL LIBRO: capitolo 3, Come vediamo i colori. Per gli addetti ai lavori, l’articolo che confronta le prestazioni visive di tricromati e tetracromate è qui.

ILLUSTRAZIONE: i cerchi concentrici centrali sembrano gialli su sfondo rosso e bianchicci su sfondo blu, giusto? In realtà sono identici. L’immagine è di Akiyoshi Kitaoka. Per sapere se siete daltonici fate il test. Per capire come vedono i daltonici se non lo siete, e per correggere immagini a colori se lo siete, planate qui.

I coni delle donne

i due quadratini con il punto sono identici

La visione a colori dei vertebrati dipende da speciali cellule a forma di cono che si trovano sulla retina. È cruciale quanti tipi diversi di cono ci sono, perché ogni tipo contiene un pigmento sensibile a una diversa porzione di lunghezze d’onda. Gli uccelli, le lucertole, le tartarughe e molti pesci hanno quattro tipi di cono (e un mondo visivo meravigliosamente variopinto), ma la maggioranza dei mammiferi, cani e gatti compresi, è equipaggiata con due tipi soltanto. A dire il vero gli antenati dei mammiferi ne possedevano l’intero set, ma i primi mammiferi persero due tipi di cono in una fase della loro evoluzione in cui (probabilmente per non incrociare i grossi dinosauri) erano diventati notturni, e vedere a colori non era più molto utile. I progenitori di un gruppo di scimmie del Vecchio Mondo (i quali hanno fatto da bisavoli pure a noi), però, a un certo punto riacquistarono un terzo cono grazie alla duplicazione e mutazione di uno degli altri due – o, più precisamente, di uno dei due geni che contenevano le istruzioni per produrre i relativi pigmenti. Gli individui con questa mutazione erano in grado di distinguere il rosso dal verde e, tra frutti rossi e foglie verdi, dovevano trovarsi sensibilmente avvantaggiati all’ora di pranzo. Ecco perché noi abbiamo la visione tricromatica, cioè tre tipi di cono (sensibili al rosso, al verde e al blu).
Punti deboli di questo escamotage: il gene del pigmento “rosso” e quello del pigmento “verde” se ne stanno l’uno accanto all’altro (dopotutto uno è nato dall’altro per un errore di copiatura) sul cromosoma sessuale X, mentre il gene del pigmento “blu” alberga per conto suo su un cromosoma dei soliti. Poniamo ora – cose che succedono – che uno dei due geni su X, ad esempio quello che contiene la ricetta per fabbricare il pigmento “rosso”, sia difettoso. Se questo capita in un maschio, la frittata è fatta: i maschi hanno un unico cromosoma X (ereditato dalla madre), per cui niente istruzioni su come si fa il pigmento “rosso”, niente “coni rossi”, impossibile distinguere il rosso dal verde. In una femmina invece le cose si aggiustano: il pigmento “rosso” entra in produzione comunque, dietro la guida del gene sano situato sull’altra copia del cromosoma X. (Le femmine hanno due copie di X, quindi potenzialmente una copia di backup di un mucchio di roba.) Ecco perché ci sono tanti daltonici e poche daltoniche.

[Questo post ha una seconda parte, con annesso colpo di scena, qui.]

DOVE NEL LIBRO: capitolo 3, Come vediamo i colori.

ILLUSTRAZIONE: I quadrati centrali dei due dischi (quelli con il puntino) appaiono verde l’uno e arancio l’altro, ma sono in realtà identici. Se siete lettori abituali del blog ormai ne sapete a sufficienza per credermi sulla parola, ma se così non fosse controllatelo di persona qui (dovrete spostare il mouse sull’area in alto a destra, sotto la scritta ‘mask’).

Cuori contro cuori

Tutti i cuori (o, più esattamente, i pallini che li compongono) hanno in realtà lo stesso colore: sono di un bel verde smeraldo, molto simile a quello della scritta sottostante. Una deliziosa versione patchwork-natalizia (di Akiyoshi Kitaoka) della mia dungeon illusion. Nel primo riquadro in alto, i pallini verdi all’interno del cuore contrastano con i pallini rossi che li circondano, acquistando una componente azzurrina (l’azzurro turchese è il colore complementare al rosso). Nel riquadro accanto, i pallini verdi all’interno del cuore contrastano con i pallini viola che li circondano, acquistando una componente gialla (il giallo è il colore complementare al viola). Il risultato è che alcuni cuori appaiono di colore azzurro turchese ed altri di colore gialloverde. All’effetto finale contribuisce anche il fatto che elementi piccoli tendono a diventare più simili al proprio sfondo, per cui se l’immagine viene rimpicciolita l’illusione diventa ancora più forte. Controllate il colore degli sfondi, e se non capite come faccia lo sfondo rosso a rendere i pallini verdi più gialli, andate a leggervi pagina 60. Dopo di che guarderete la TV a colori con altri occhi…

DOVE NEL LIBRO: Potete trovare tante informazioni su queste e altre stupefacenti illusioni di colore, e sui vari modi in cui i colori influenzano il nostro comportamento, nel capitolo 3, Come vediamo i colori.

IMMAGINE: Carpet of blue and green hearts. Akiyoshi Kitaoka, 2007. Guardate altre immagini basate sulla stessa illusione sul sito di A. Kitaoka. Eventuali donne e uomini di poca fede: scaricate la versione originale del file, ad alta risoluzione (beh, non altissima, ma sufficiente in caso voleste procedere con uno zoom per confrontare tra loro i colori dei pallini). A proposito: nella scienza, avere poca fede è una virtù.

The color purple

MacLeodRingsNon ci credete neanche questa volta? Ma sì, appunto: i due anelli, il piccolino rossiccio e il grande bluastro, hanno lo stesso colore. Ritagliati e incollati su uno sfondo bianco, sarebbero entrambi viola. Figure così dovrebbero metterle su Casa & Giardino a mo’ di avvertimento: Non Andate A Cercare Un Cuscino Dello Stesso Viola Del Vostro Divano Senza Portarvi Dietro Un Campione Di Tessuto! Il colore viola del divano dipende da tutti gli altri colori presenti nel soggiorno, e varia inoltre al variare dell’illuminazione. Col cavolo che è possibile ricordare il “vero” viola del divano: di quel “vero” viola non abbiamo alcuna esperienza.
In questa figura (e nel resto nel mondo, incluso il nostro soggiorno) ogni colore acquista percettivamente una componente complementare al colore adiacente. Il viola dell’anello piccolo vira verso il rosso perché sta su sfondo blu (questo blu ha come complementare il rosso); il viola dell’anello grande vira verso il blu perché sta su sfondo rosso (questo rosso ha come complementare il blu).
Qui l’effetto è rafforzato dalla presenza di un gradiente, cioè di una transizione graduale fra il blu e il rosso dello sfondo. Nel paradiso dei gradienti abbiamo già messo piede, ricordate? Come mai i gradienti potenzino gli effetti di contrasto ufficialmente non è noto, ma ufficiosamente possiamo presumere che sia perché, in natura, un gradiente segnala una differenza nell’illuminazione (le ombre hanno normalmente margini di questo tipo). Questi due anelli hanno fisicamente lo stesso colore. Beh, se fossero veramente illuminati da luci di tinta diversa (l’anello piccolo da un faretto blu e l’anello grande da una ciambella di luce rossa), l’anello piccolo rifletterebbe soprattutto luce blu, il grande soprattutto luce rossa. Al contrario, i due riflettono luce identicamente viola: il che induce il sistema visivo a ‘concludere’ che il cerchio piccolo sotto illuminazione blu è in realtà rosso, e il cerchio grande sotto illuminazione rossa è in realtà blu.
Capito? Rovinati da troppa intelligenza (visiva).

DOVE NEL LIBRO: capitolo 3, Come vediamo i colori. Questa è una dimostrazione del fenomeno del contrasto di colore.

ILLUSTRAZIONE: Don MacLeod, University of California, San Diego. Potete trovare l’originale, assieme a tante altre illusioni, in questo bel database di figure utili a chi si interessa di visione.

Contate le macchie scure e fatemi sapere

scintillating gridChe fastidio. A che cosa è dovuto il lampeggiare di macchie scure in questa figura? Negli anni Cinquanta, registrando l’attività delle cellule retiniche di un gatto, Stephen Kuffler rimase stupefatto nello scoprire che queste rispondevano meglio a macchie luminose piccole che a macchie luminose grandi. Kuffler ne dedusse, correttamente, che ogni cellula era non soltanto attivata dalla luce che cadeva su una certa zona della retina (il centro del suo campo recettivo), ma anche inibita dalla luce che cadeva nella regione immediatamente circostante (la periferia del suo campo recettivo).
Sui dischetti bianchi alle intersezioni di questa “griglia scintillante” vediamo comparire e scomparire delle macchioline nere. L’effetto (scoperto da J. R. Bergen nel 1993 e indipendentemente riscoperto l’anno dopo, in versione più avvincente, da Elke Lingelbach) è dovuto probabilmente ad una piccola sfasatura temporale fra le risposte del centro (attivazione) e della periferia (inibizione). Le risposte eccitatorie sono più rapide di quelle inibitorie. Di conseguenza, ogni volta che il nostro occhio si sposta sull’immagine, le cellule che segnalano “bianco” in corrispondenza delle intersezioni generano una risposta vigorosa, che viene ridotta bruscamente non appena arriva l’inibizione dalle cellule vicine. Questa riduzione della risposta viene percepita come un improvviso oscuramento del disco bianco, e crea una sensazione di sfarfallìo mentre muoviamo gli occhi.

DOVE NEL LIBRO: capitolo 4, Come vediamo i grigi. Nel libro troverete anche la versione classica, non scintillante ma pur sempre notevole, di questa illusione: la griglia di Hermann, descritta nel diciannovesimo secolo.

RIFERIMENTI: Schrauf, M., Lingelbach, B., Lingelbach, E., & Wist, E. R. (1995). The Hermann grid and the scintillation effect. Perception, 24, suppl., 88–89.
Schrauf, M., Lingelbach, B., & Wist, E. R. (1997). The scintillating grid illusion. Vision Research, 37, 1033–1038.

Farfalle, antilopi e compressione JPEG

purvesshimpilotto.jpgLe due facce di questo solido hanno lo stesso colore, sono dello stesso identico grigio. Lo so che preferite credere ai vostri occhi, e i vostri occhi vi dicono che non è vero. Beh, provate a coprire, con un dito, la zona che separa le due facce.
Questa è una versione tridimensionale e particolarmente efficace della vecchia illusione di Cornsweet. Quando due regioni identiche sono separate da un contorno speciale composto da due gradienti di luminanza adiacenti, la regione che confina con il gradiente scuro (qui, la faccia superiore del solido) appare uniformemente più scura della regione che confina con il gradiente chiaro (qui, la faccia inferiore del solido). L’uso di un doppio margine chiaro/scuro per aumentare il contrasto di regioni adiacenti si è evoluto nel regno animale (falene, serpenti, antilopi) per spezzare, a scopo mimetico, la continuità del corpo. Le antilopi insomma vanno in giro con l’illusione di Cornsweet in bella mostra, ad uso del leone.
L’illusione di Cornsweet svela come l’organizzazione centro/periferia delle cellule del nostro sistema visivo codifichi normalmente le informazioni. Prendiamo un quadrato grigio su sfondo nero. Codificare separatamente la luminanza di ogni singolo punto dell’immagine sarebbe dispendioso. Un metodo enormemente più efficiente è quello di definire le due luminanze, definire la posizione del margine del quadrato, e indicare quale luminanza sta dentro e quale fuori. Gli algoritmi di compressione dell’immagine che consentono di ridurre le dimensioni di documenti ingombranti, ad esempio JPEG, fanno esattamente questo.
La prossima volta che salvate un’immagine in formato JPEG pensate alla strabiliante varietà di sistemi visivi che, in tempo reale, stanno facendo qualcosa di molto simile.

DOVE NEL LIBRO: capitolo 4, Come vediamo i grigi.

Illustrazione: da D. Purves, A. Shimpi & R. Beau Lotto, An empirical explanation of the Cornsweet effect. The Journal of Neuroscience, 19, 1999, 8542-8551.